1,360 research outputs found

    Photocatalytic oxidation mechanism of alkanes in contact with titanium dioxide

    Get PDF
    Isobutane was photooxidized on titanium dioxide between -16 and +180 C in tertiary butanol and acetone. The formation of tertiary butanol preceded the formation of acetone. Above 20 C the latter compound became clearly predominant. The reaction kinetics obeyed a steady state model of oxygen chemisorption with the involvement of isobutane in the physisorbed phase

    Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    Get PDF
    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption

    Synthesis of 3,6-Dihydro-2H-[1, 2]-Oxazines from Nitroarenes and Conjugated Dienes, Catalyzed by Palladium/Phenanthroline Complexes and Employing Phenyl Formate as a CO Surrogate

    Get PDF
    Palladium/phenanthroline catalyzed reduction of nitroarenes by in situ-generated carbon monoxide, from the decomposition of phenyl formate, affords the corresponding nitrosoarenes. The latter are trapped by conjugated dienes to give the corresponding 3,6-dihydro-2H-[1, 2]-oxazines (hetero Diels-Alder adducts). Many functional groups are well tolerated. Yields are higher than those obtainable by any previously reported method, including the direct reaction of the diene with the pure nitrosoarene. The reaction can be performed in a single standard glass pressure tube, without the need for autoclaves or high-pressure CO lines

    Capillary breakup and electrospinning of PA6 solutions containing FeCl3: experimental findings and correlations

    Get PDF
    In several applications, ranging from electronic to chemical sensing, great interest has grown for the exploitation of conducting polymer nanofibers, whose processing is, however, not straightforward, due to polymer low solubility and presence of rigid backbones. An interesting method to overcome this issue consists in the electrospinning of a spinnable polymer to obtain a template for the successive in situ polymerization of the conducting polymer monomers. Considering PANI nanofibers, a suitable template can be electrospun from PA6 solutions in formic acid containing FeCl3. In this system, the ionic salt may perturb or prevent H-bonds formation between amide groups of PA6 backbones: this could modify solution viscoelasticity, and thus affect fibres morphology. The aim of the present work is to identify the effect of FeCl3 on the solution rheological behaviour and to correlate it to electrospun fibres morphology. To this aim, solutions at several salt content underwent electrospinning and were characterized both in shear, by rotational rheometry, and extension, by capillary breakup rheometry, while fibres morphology and crystallinity were evaluated through SEM and DSC. The rheological analysis enlightens that a critical FeCl3 content exists above which the viscous component of the viscoelastic response becomes predominant. At the same concentration, the SEM observations of the electrospun fibres show the formation of severely inhomogeneous structures. A correlation between these results is proposed through the adimensional analysis of competing viscoelastic stabilization and surface tension-driven instability phenomena. Besides the aforementioned effects, the FeCl3 content affects also fibre crystallinity, as above a critical concentration fibres turn out to be completely amorphous. Interestingly, this concentration coincides with the one at which a transition is observed in the rheological behaviour

    Reduction of nitro compounds using 3d-non-noble metal catalysts

    Get PDF
    The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages

    Laser-driven production with advanced targets of Copper-64 for medical applications

    Get PDF
    Radionuclides are of paramount importance in nuclear medicine both for clinical uses and radiopharmaceutical production. Among the others, nuclides suitable for theranostics like Copper-64 are particularly attractive since they can play both a diagnostic and therapeutic role. In the last years, the growing demand for these nuclides stimulated the research of new solutions, along with cyclotrons already in use, for their production. In this respect, a promising alternative is laser-driven proton accelerators based on the interaction of superintense laser pulses with target materials. Because of their potential compactness and flexibility, they are under investigation for several applications ranging from materials science to nuclear medicine. Moreover, the use of advanced Double-Layer targets (DLTs) was identified as a viable route to increase the number and energy of the accelerated protons to satisfy the requirements of demanding applications. In this contribution, we numerically investigate the use of DLT-based laser-driven sources for Copper-64 production. We show that activities relevant to pre-clinical studies can be achieved with an existing 150 TW laser and DLTs. Moreover, we extend the discussion by considering a broad range of laser systems by exploiting a theoretical model. Our results can guide the choice of laser and target parameters for future experimental investigations

    Nitrogen-Enriched Graphene Iron Oxide Nanoparticles as Innovative Catalysts: First Application to Cyclopropanation Reactions

    Get PDF
    A new class of catalysts having a metal/metal oxide core surrounded by a few nitrogen-enriched graphene layers (NGR) has recently brought immense attention in research. Until now, NGR catalysts have mostly been employed for hydrogenation reactions. In this work, we expand the field of applicability of NGR catalysts to cyclopropanation reactions. The activity of Fe2O3/NGr@C has been studied by using ethyl diazoacetate and \u3b1-methylstyrene as substrates. Various parameters such as solvents, temperature and time were changed. Fe2O3/NGr@C-catalysts showed best activity in dimethoxyethane at 60 oC, affording high yields of the desired cyclopropanes (mixture of cis and trans isomers) and only 1-2 % of ethyl maleate and fumarate (Figure 1). The catalyst gradually deactivates after each recycle, but we were able to reactivate the recovered catalyst by treating it with dilute H2O2 (1:10 with distilled water). Like \u3b1-methylstyrene, several olefins such as 4-chloro-\u3b1-methyl styrene, 4-methylstyrene, 2- methylstyrene, 3-methylstyrene, 4-chlorostyrene, 4-t-butylstyrene, 1-octene etc. have been tested in order to explore the substrate scope. The corresponding cyclopropanes were obtained in high to excellent isolated yields (84-98%). In all cases trans diastereoselectivity was found, but even the minor cis isomer could be isolated in a pure form

    Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins

    Get PDF
    The first examples of heterogeneous Fe-catalysed cyclopropanation reactions are presented. Pyrolysis of in situ-generated iron/phenanthroline complexes in the presence of a carbonaceous material leads to specific supported nanosized iron particles, which are effective catalysts for carbene transfer reactions. Using olefins as substrates, cyclopropanes are obtained in high yields and moderate diastereoselectivities. The developed protocol is scalable and the activity of the recycled catalyst after deactivation can be effectively restored using an oxidative reactivation protocol under mild conditions
    corecore